
IDENTITIES FOR POWERS OF FIBONACCI NUMBERS

EDUARDO CHAPPA

Abstract. We prove an identity for powers of Fibonacci numbers whose indices are in arith-
metic sequence. The identity generalizes Jarden’s identity for powers of consecutive Fibonacci
numbers. The methods described here are applied to obtain analogous identities for Fibonacci
and Lucas polynomials.

1. Introduction

Consider a generalized Fibonacci sequenceGn, that is a sequence that satisfies the recurrence
relation Gn = Gn−1+Gn−2. Jarden [1] proved that powers of consecutive terms in a generalized
Fibonacci sequence satisfy the identity

k+1∑
j=0

(−1)j(j+1)/2

(
k + 1

j

)
1

Gk
n−j = 0,

for any positive integer k, where
(
k
j

)
1

is the Fibonomial number defined as(
k

j

)
1

=
Fk

F1
· Fk−1
F2
· . . . ·

Fk−j+1

Fj
,

and
(
k
0

)
1

= 1. In this paper we extend this identity to the case in which the terms are not
necessarily consecutive, but follow the pattern of an arithmetic sequence. Specifically, we prove
that any generalized Fibonacci sequence Gn satisfies the identity

k+1∑
j=0

(−1)j+jkd−j(j−1)d/2
(
k + 1

j

)
d

Gk
n+jd = 0, (1.1)

for all integers n, d, and k such that d, k ≥ 1, where the numbers(
k

j

)
d

=
Fkd

Fd
·
F(k−1)d

F2d
·
F(k−2)d

F3d
· . . . ·

F(k−j+1)d

Fjd
,

for j ≥ 1, are the d-Fibonomials and
(
k
0

)
d

= 1. The proof of identity (1.1) leads to the
construction of a family of square-free polynomials in one variable. We study divisibility
properties among members of this family, and conclude other identities among Fibonacci and
Lucas numbers that include d-Fibonomials.

This paper is organized as follows. Section 2 is used to construct a polynomial Pk,d that is
needed in order to prove equation (1.1). In section 3 we prove factorization and divisibility
properties of Pk,d, and deduce an explicit formula for Pk,d in Theorem 3.7 that is used to
deduce identity (1.1) in Theorem 3.8. In section 4 we give some applications of the formulas
found in section 3 and prove some identities for Fibonacci and Lucas numbers. Section 5
is devoted to dicussing how the identities in previous sections are generalized to Fibonacci
Polynomials.
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2. Construction of a Family of Polynomials

Let S be the space of all sequences of complex numbers. We define a shift operator S : S →
S. Given a sequence xn, S(x) is the sequence

S(x)n = xn+1.

Given a polynomial P (x) =
∑m

k=0 akx
k with complex coefficients ak, we define the operator

P (S) : S → S by

P (S) =
m∑
k=0

akS
k,

where Sk is the composition of the shift operator with itself k times, so it is the operator that
shifts a sequence by k. For example, if P (x) = x2−x−1, then P (S)(F )n = Fn+2−Fn+1−Fn =
0, if F is the Fibonacci sequence. In order to simplify our notation, we will write P (S)xn
instead of the more proper P (S)(x)n.

Given a generalized Fibonacci sequence G and a positive integer k, we would like to find a
polynomial P such that P (S)Gk = 0. Binet’s formula implies that

Gn = aϕn + b(−1/ϕ)n,

for some numbers a and b, where ϕ is the Golden Ratio. Therefore, by the Binomial Theorem,

P (S)Gk
n =

k∑
j=0

P ((−1)jϕk−2j)

(
k

j

)
ak−jbj(−1)njϕnk−2nj . (2.1)

If P is chosen so that P ((−1)jϕk−2j) = 0, for all j = 0, . . . , k, then P (S)Gk = 0. The minimal
polynomial that satisfies these equations is

Pk,1(x) =

k∏
j=0

(x− (−1)jϕk−2j). (2.2)

Later on we will find explicit formulas for Pk,1, and we will see that it contains k+2 non-zero
terms, and solves the problem for d = 1. In order to solve this problem for d > 1, we notice
that we are looking for a polynomial of the form

P (x) =
m∑
j=0

Cjx
jd, (2.3)

for some m, such that P (S)Gk = 0 for any generalized Fibonacci sequence. In order to find a
formula for P , notice first that if ω is a complex number such that ωd = 1, and P is given by
equation (2.3) then P (ωx) = P (x).

Conversely, if P is a polynomial such that P (ωx) = P (x) for every complex number ω
such that ωd = 1, then P is given by an equation of the form (2.3), because in this case the

k-th derivative of P at 0 satisfies P (k)(0) = ωkP (k)(0), so that P (k)(0) = 0, if ω is chosen
as a primitive d root of unity and k is not a multiple of d. Therefore, by Maclaurin formula
P (x) =

∑m
k=0 akx

dk, for some m.

Definition 2.1. Let ω be a primitive d root of unity. We define the polynomial Pk,d, called
the d symmetrization of Pk,1, by

Pk,d(x) =

d∏
i=1

Pk,1(ω
ix) =

d∏
i=1

k∏
j=0

(ωix− (−1)jϕk−2j). (2.4)
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Sometimes it will be more useful to write Pk,d(x) =
∏d−1

i=0 Pk,1(ω
ix). This can be done

because ω0 = ωd = 1.

Theorem 2.2. The d symmetrization of Pk,1 is well-defined, that is, Pk,d is independent of
the primitive d root of unity chosen.

Proof. Let ω1 and ω2 be primitive d roots of unity. It follows that ωm1
1 = ω2 and ωm2

2 = ω1,
for some integers 0 < m1,m2 < d, so that ωm1m2

2 = ω2, therefore m1m2 − 1 = jd, for some
integer j. In particular m1 and m2 are relatively primes with d and

d∏
i=1

Pk,1(ω
i
1x) =

d∏
i=1

Pk,1(ω
m2i
2 x) =

d∏
i=1

Pk,1(ω
m2i−qd
2 x),

where q is any integer. Given an index i, pick q = qi as the quotient of the division of m2i
by d, then the number ri = m2i − qd satisfies 0 ≤ ri < d. Now observe that the number ri
obtained by division depends on the initial number i, but different numbers i produce different
numbers ri, because if m2i− qid = m2j − qjd, where 1 ≤ i, j ≤ d, then m2(i− j) = d(qi − qj).
Since m2 and d are relatively prime, then d must divide i− j. But since 1 ≤ i, j ≤ d, then i− j
is an integer in the interval −(d− 1) ≤ i− j ≤ d− 1. The only number divisible by d in that
interval is 0, so that i− j = 0, and i = j. Therefore the sequence of remainders of the division
of m2i by d is a one-to-one function from {1, 2, . . . , d} to {0, 1, . . . , d−1} and therefore it must
be onto. This means, we must have

d∏
i=1

Pk,1(ω
m2i−qd
2 x) =

d−1∏
r=0

Pk,1(ω
r
2x) =

d∏
r=1

Pk,1(ω
r
2x),

therefore
∏d

i=1 Pk,1(ω
i
1x) =

∏d
i=1 Pk,1(ω

i
2x), and Pk,d(x) is independent of the d primitive root

of unity chosen. �

3. Properties of Pk,d

In this section we will prove factorization and divisibility properties of the polynomial Pk,d

constructed in section 2. We prove first some basic properties of Pk,d.

Theorem 3.1. Let k and d be positive integers, then Pk,d is a polynomial of degree (k + 1)d

that can be expanded only in powers of xd.

Proof. That Pk,d has degree (k + 1)d follows directly from its definition.

In order to prove that Pk,d can be expanded in powers of xd, let λ 6= 1 be a complex number

that satisfies λd = 1 and ω be a primitive d root of unity, then there exists an exponent e such
that λ = ωe, and 0 < e < p, therefore

Pk,d(λx) =
∏d

i=1 Pk,1(ω
iλx) =

∏d
i=1 Pk,1(ω

i+ex)

=
∏d−e

i=1 Pk,1(ω
i+ex) ·

∏d
i=d−e+1 Pk,1(ω

i+ex)

=
∏d

i=e+1 Pk,1(ω
ix) ·

∏d+e
i=d+1 Pk,1(ω

ix)

=
∏d

i=e+1 Pk,1(ω
ix) ·

∏d+e
i=d+1 Pk,1(ω

i−dx)

=
∏d

i=e+1 Pk,1(ω
ix) ·

∏e
i=1 Pk,1(ω

ix)

=
∏e

i=1 Pk,1(ω
ix) ·

∏d
i=e+1 Pk,1(ω

ix)

=
∏d

i=1 Pk,1(ω
ix) = Pk,d(x).

�

Now we establish some divisibility properties of the family of polynomials Pk,d.
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Theorem 3.2. If d1 divides d2, then Pk,d1 divides Pk,d2 . Moreover, if ω is a primitive d2 root
of unity, then

Pk,d2(x) = Pk,d1(x)Pk,d1(ωx) · . . . · Pk,d1(ωd2/d1−1x). (3.1)

Proof. Let m = d2/d1. Since ω is a primitive d2 root of unity, then ωm is a primitive d1 root
of unity.

Write Pk,d2 as a product of d2 polynomials of the form Pk,1(ω
jx), where 0 ≤ j ≤ d2 − 1. In

order to simplify this proof, write this multiplication in a rectangular array of d1 rows, each
with m factors as shown below. Note that the last factor in this product is Pk,1(ω

d2−1x), by

the definition of Pk,d2(x), but it is written below as Pk,1(ω
(d1−1)mωm−1x), because d2 − 1 =

d1m− 1 = (d1 − 1)m+m− 1. Therefore

Pk,d2(x) =

Pk,1(x) Pk,1(ωx) · . . . · Pk,1(ω
m−1x)

Pk,1(ω
mx) P1,1(ω

mωx) · . . . · Pk,1(ω
mωm−1x)

...
...

...
...

Pk,1(ω
(d1−1)mx) Pk,1(ω

(d1−1)mωx) · . . . · Pk,1(ω
(d1−1)mωm−1x).

By equation (2.4) the multiplication of the polynomials in the first (leftmost) column is
Pk,d1(x), while the multiplication of the polynomials in the second column is Pk,d1(ωx), etc.
Multiplying all columns we obtain equation (3.1). �

The following factorization of xd − λd will be useful in the remainder of this paper.

Theorem 3.3. Let d be a positive integer, λ a complex number and ω be a primitive d root
of unity, then

d∏
p=1

(ωpx− λ) = (−1)d+1(xd − λd). (3.2)

Proof. Let P (x) =
∏d

p=1(ω
px− λ), then P is a polynomial of degree d with roots xp = λ/ωp,

where p = 1, . . . , d. These are the same roots of the polynomial Q(x) = xd − λd, so that
P (x) = C(xd− λd), where C is the coefficient of the highest power of x, which is ω1+2+...+d =

ωd(d+1)/2 = (−1)d+1. �

The previous theorem implies that we can write equation (2.4) as

Pk,d(x) = (−1)(k+1)(d+1)
k∏

j=0

(xd − (−1)jdϕ(k−2j)d). (3.3)

The next theorem tells us that when simplifying the previous product, it is convenient to
multiply factors whose indices add up to k.

Theorem 3.4. Let k be an integer, and assume that j1 and j2 are integers such that j1+j2 = k,
then

(xd − (−1)j1dϕ(k−2j1)d)(xd − (−1)j2dϕ(k−2j2)d) = x2d − (−1)j1dL(k−2j1)dx
d + (−1)kd. (3.4)

Proof. Let A1 = (−1)j1dϕ(k−2j1)d and A2 = (−1)j2dϕ(k−2j2)d, then (xd − A1)(x
d − A2) =

x2d − (A1 +A2)x
d +A1A2. We compute and simplify A1 +A2 and A1A2.

We start by simplifying A1A2

A1A2 = (−1)j1dϕ(k−2j1)d(−1)j2dϕ(k−2j2)d

= (−1)(j1+j2)dϕ(2k−2(j1+j2))d = (−1)kd.
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Now we simplify A1 +A2, then

A1 +A2 = (−1)j1dϕ(k−2j1)d + (−1)(k−j1)dϕ(k−2(k−j1))d

= (−1)j1dϕ(k−2j1)d + (−1)(k−j1)dϕ−(k−2j1)d

But, since ϕp = Fpϕ+ Fp−1 for any integer p, then we can simplify the above equality as

= (−1)j1d(F(k−2j1)dϕ+ F(k−2j1)d−1) + (−1)(k−j1)d(F−(k−2j1)dϕ+ F−(k−2j1)d−1)

Now, since F−p = (−1)p−1Fp, we can rewrite the above equality as

= (−1)j1d(F(k−2j1)dϕ+ F(k−2j1)−1)

+(−1)(k−j1)d((−1)(k−2j1)d−1F(k−2j1)dϕ+ (−1)(k−2j1)dF(k−2j1)d+1)

= (−1)j1d(F(k−2j1)dϕ+ F(k−2j1)d−1) + (−1)(2k−3j1)d−1F(k−2j1)dϕ

+(−1)(2k−3j1)dF(k−2j1)d+1

= (−1)j1d(F(k−2j1)dϕ+ F(k−2j1)d−1)− (−1)j1dF(k−2j1)dϕ+ (−1)j1dF(k−2j1)d+1

= (−1)j1dF(k−2j1)d−1 + (−1)j1dF(k−2j1)d+1

= (−1)j1dL(k−2j1)d

Hence

(−1)j1dϕ(k−2j1)d + (−1)j2dϕ(k−2j2)d = (−1)j1dL(k−2j1)d. (3.5)

This concludes the proof. �

An analogous conclusion to that of Theorem 3.2 is that if k1 divides k2, then Pk1,d divides
Pk2,d. This, however, is not true. For example, P2,1 is not divisible by P1,1. However, we prove
the following

Theorem 3.5. Let k and d be positive integers. Let Qk,d(x) = Pk,d(xk), and m be a positive
integer, then Qk,d divides Qmk,d.

Proof. By equation (3.3)

Qk,d(x) = (−1)(k+1)(d+1)
k∏

j=0

(xkd − (−1)jdϕ(k−2j)d),

so that

Qkm,d(x) = (−1)(km+1)(d+1)
km∏
j=0

(xkmd − (−1)jdϕ(km−2j)d).

Now for each 0 ≤ j ≤ k, the polynomial xkd − (−1)jdϕ(k−2j)d divides the polynomial xkmd −
(−1)jmdϕ(km−2jm)d. If we pick j′ = jm, then xkd − (−1)jdϕ(k−2j)d divides the polynomial

xkmd − (−1)j
′dϕ(km−2j′)d. Since 0 ≤ j ≤ k, then 0 ≤ j′ ≤ mk. This means that xkmd −

(−1)j
′dϕ(km−2j′)d is a factor ofQkm,d. Therefore every different factor ofQk,d divides a different

factor of Qkm,d, so that Qk,d divides Qkm,d. �

In particular, the family of polynomials Qk,d satisfies that Qk1,d1 divides Qk2,d2 , whenever
either k1 divides k2 or d1 divides d2.

The following theorem establishes the link needed to obtain relations between coefficients
of the polynomials Pk,d and Pk+1,d.

Theorem 3.6. Let Pk,d be defined by (2.4), then

Pk+1,d(ϕx) = (−1)d+1Pk,d(x)(ϕ(k+2)dxd − (−1)(k+1)d). (3.6)
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Proof. In fact, by equation (2.4) we must have

Pk+1,d(x) =

d∏
p=1

k+1∏
j=0

(ωpx− (−1)jϕk+1−2j),

so that

Pk+1,d(ϕx) =
∏d

p=1

∏k+1
j=0(ωpϕx− (−1)jϕk+1−2j)

=
∏d

p=1

∏k+1
j=0 ϕ(ωpx− (−1)jϕk−2j)

= ϕ(k+2)d
∏d

p=1

∏k+1
j=0(ωpx− (−1)jϕk−2j)

= ϕ(k+2)d
∏d

p=1

∏k
j=0(ω

px− (−1)jϕk−2j)
∏d

p=1(ω
px− (−1)k+1ϕk−2(k+1))

= ϕ(k+2)dPk,d(x)
∏d

p=1(ω
px− (−1)k+1ϕ−(k+2)).

But
∏d

p=1(ω
px − (−1)k+1ϕ−(k+2)) = (−1)d+1(xd − (−1)(k+1)d/ϕ(k+2)d), by the factorization

Theorem 3.3, so that

Pk+1,d(ϕx) = ϕ(k+2)dPk,d(x)(−1)d+1(xd − (−1)(k+1)d/ϕ(k+2)d),

which implies equation (3.6). �

Now we are ready to expand Pk,d in powers of xd.

Theorem 3.7. If Pk,d is defined by equation (2.4), then

Pk,d(x) = (−1)(k+1)(k+2)d/2
k+1∑
j=0

(−1)j+jkd−j(j−1)d/2
(
k + 1

j

)
d

xjd. (3.7)

Proof. As a consequence of Theorem 3.4 and equality (3.3), if k is odd, then

Pk,d(x) =

(k−1)/2∏
j=0

(x2d − (−1)jdL(k−2j)dx
d + (−1)d), (3.8)

and if k is even, then

Pk,d(x) = (−1)d+1(xd − (−1)kd/2)

k/2−1∏
j=0

(x2d − (−1)jdL(k−2j)dx
d + 1). (3.9)

Equations (3.8) and (3.9) prove that whether k is even or odd, Pk,d is a product of polynomials
that have integer coefficients, and therefore Pk,d has integer coefficients too.

Since Pk,d has degree (k + 1)d and can be expanded only in powers of xd, let us write

Pk,d(x) =
k+1∑
j=0

Ck,d,jx
jd, (3.10)

where the coefficients Ck,d,j are integers. Since Ck,d,0 = Pk,d(0), we conclude that

Ck,d,0 = Pk,d(0) =
∏d

p=1

∏k
j=0(−(−1)jϕk−2j)

= (−1)(k+1)dϕk(k+1)d
∏d

p=1

∏k
j=0(−1)jϕ−2j

= (−1)(k+1)dϕk(k+1)d
∏d

p=1(−1)k(k+1)/2ϕ−k(k+1)

= (−1)(k+1)dϕk(k+1)d(−1)k(k+1)d/2ϕ−k(k+1)d

= (−1)(k+1)d+k(k+1)d/2

= (−1)(k+1)(k+2)d/2,

6
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so that

Ck,d,0 = (−1)(k+1)(k+2)d/2. (3.11)

On the other hand, equation (3.6) can be written as

k+2∑
j=0

Ck+1,d,j(ϕx)jd = (−1)d+1(ϕ(k+2)dxd − (−1)(k+1)d)

k+1∑
j=0

Ck,d,jx
jd.

Simplifying the multiplication in the right hand side, we get

= (−1)d+1
(∑k+1

j=0 Ck,d,jϕ
(k+2)dx(j+1)d −

∑k+1
j=0(−1)(k+1)dCk,d,jx

jd
)

= (−1)d+1
(∑k+2

j=1 Ck,d,j−1ϕ
(k+2)dxjd −

∑k+1
j=0(−1)(k+1)dCk,d,jx

jd
)

Comparing coefficients of xjd, when 1 ≤ j ≤ k + 1 leads to the equations

Ck+1,d,jϕ
jd = (−1)d+1

(
Ck,d,j−1ϕ

(k+2)d − (−1)(k+1)dCk,d,j

)
, (3.12)

for all 1 ≤ j ≤ k + 1.
Dividing equation (3.12) by ϕjd we obtain

Ck+1,d,j = (−1)d+1ϕ(k+2−j)dCk,d,j−1 + (−1)kdϕ−jdCk,d,j . (3.13)

Given that ϕp = Fpϕ+Fp−1, for any integer p, the right hand side of equation (3.13) is of the
form a + bϕ, where a and b are integers. Since ϕ is irrational, then an equation of the form
c = a+ bϕ, where a, b and c are integers implies c = a and b = 0. This, in turn, gives us the
following two equations

0 = (−1)d+1F(k+2−j)dCk,d,j−1 − (−1)(k−j)dFjdCk,d,j (3.14)

Ck+1,d,j = (−1)d+1F(k+2−j)d−1Ck,d,j−1 + (−1)(k−j)dFjd+1Ck,d,j , (3.15)

for any 1 ≤ j ≤ k + 1. From equation (3.14) it follows that

Ck,d,j = −(−1)(k−j+1)dF(k+2−j)d

Fjd
Ck,d,j−1. (3.16)

for any 1 ≤ j ≤ k + 1. Solving this equation leads to the equality

Ck,d,j = (−1)j+jkd−j(j−1)d/2+(k+1)(k+2)d/2

(
k + 1

j

)
d

, (3.17)

for all 1 ≤ j ≤ k+ 1. Observe that formula (3.17) is also valid when j = 0 because
(
k+1
0

)
d

= 1,
therefore formula (3.17) is valid for 0 ≤ j ≤ k + 1. �

We summarize our analysis in the following

Theorem 3.8. Let Gn be a generalized Fibonacci sequence, then for every integer n and for
all d, k ≥ 1,

k+1∑
j=0

(−1)j+jkd−j(j−1)d/2
(
k + 1

j

)
d

Gk
n+jd = 0. (3.18)

Proof. By the construction of Pk,d, we have Pk,d((−1)jϕk−2j) = 0, for any 0 ≤ j ≤ k. This

implies Pk,d(S)Gk = 0, for any generalized Fibonacci sequence G.
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Since Pk,d can be expanded in powers of xd by a formula given by equation (3.7), then the

equation Pk,d(S)Gk = 0 is

k+1∑
j=0

(−1)j+jkd−j(j−1)d/2
(
k + 1

j

)
d

Gk
n+jd = 0,

is true for any integer n, and for all d, k ≥ 1, as we wanted to prove. �

More divisibility properties among members of the Pk,d family are implied by the next
theorem, which implies that Pk,d divides Pk+2,d when d is even, and that Pk,d divides Pk+4,d,
for any d.

Theorem 3.9. Let k and d be positive integers, then

Pk+2,d(−x) = (−1)(k+1)dPk,d(x)(x2d − (−1)dL(k+2)dx
d + (−1)kd). (3.19)

Proof. Observe that by equation (3.3)

Pk+2,d(x) = (−1)(k+3)(d+1)
k+2∏
j=0

(xd − (−1)jdϕ(k+2−2j)d),

so that simplifying we can write

Pk+2,d(x) = (−1)(k+1)(d+1)
∏k+2

j=0(xd − (−1)jdϕ(k−2(j−1))d)

= (−1)(k+1)(d+1)
∏k+1

j=−1(x
d − (−1)(j+1)dϕ(k−2j)d).

Replacing x with −x, we obtain

Pk+2,d(−x) = (−1)(k+1)(d+1)
∏k+1

j=−1((−1)dxd − (−1)(j+1)dϕ(k−2j)d)

= (−1)(k+1)(d+1)(−1)(k+3)d
∏k+1

j=−1(x
d − (−1)jdϕ(k−2j)d)

= (−1)(k+1)d(−1)(k+1)(d+1)
∏k+1

j=−1(x
d − (−1)jdϕ(k−2j)d).

If we separate, from the product above, the terms with indices j = −1 and j = k + 1,
those terms have indices that add up to k, so that by Theorem 3.4 their product is x2d −
(−1)dL(k+2)d + (−1)kd. The multiplication of the remaining terms from j = 0 to j = k is
Pk,d(x), so we obtain

Pk+2,d(−x) = (−1)(k+1)dPk,d(x)(x2d − (−1)dL(k+2)d + (−1)kd). �

The final divisibility property we will establish is given in the following

Theorem 3.10. The polynomial P1,kd, divides Qk,d.

Proof. By equation (3.8) with k = 1, we obtain

P1,d(x) = x2d − Ldx
d + (−1)d = Rd(xd),

where

Rd(x) = x2 − Ldx+ (−1)d = (x− ϕd)(x− (−1/ϕ)d). (3.20)

Observe that by the previous factorization of Rd, P1,d(ϕ) = 0. This implies that equations
(3.8) and (3.9) can be written as

Pk,d(x) =

(k−1)/2∏
j=0

R(k−2j)d((−1)jxd), (3.21)

8
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when k is odd, and

Pk,d(x) = (−1)d+1(xd − (−1)kd/2)

k/2−1∏
j=0

R(k−2j)d((−1)jxd), (3.22)

when k is even. In both products in equations (3.21) and (3.22), the term with j = 0 is Rkd(xd),
so the term with j = 0 in the product defining Qk,d(x) = Pk,d(xk) is Rkd(xkd) = P1,kd(x). It
follows that P1,kd divides Qk,d. �

4. Applications

If we go back to equation (3.15), and we use equation (3.17) we obtain an equation of the
form

(−1)A
(
k + 2

j

)
d

= (−1)BF(k+2−j)d−1

(
k + 1

j − 1

)
d

+ (−1)CFjd+1

(
k + 1

j

)
d

, (4.1)

where
A = j + j(k + 1)d− j(j − 1)d/2 + (k + 2)(k + 3)d/2
B = d+ j + (j − 1)kd− (j − 1)(j − 2)d/2 + (k + 1)(k + 2)d/2
C = (k − j)d+ j + jkd− j(j − 1)d/2 + (k + 1)(k + 2)d/2.

Dividing both sides of equation (4.1) by (−1)A, and noticing that B − A = −2kd+ 2jd+ 2d
and C −A = −2jd− 2d, it follows that (−1)B−A = (−1)C−A = 1, and(

k + 2

j

)
d

= F(k+2−j)d−1

(
k + 1

j − 1

)
d

+ Fjd+1

(
k + 1

j

)
d

. (4.2)

The previous argument gives another proof of a classical identity between consecutive rows
of fibonomial coefficients for a fixed d. The next theorem gives an identity between three
consecutive fibonomial coefficients and one that is two rows apart.

Theorem 4.1. Let k and d be positive numbers such that k ≥ 2, then for any j such that
0 ≤ j ≤ k (

k + 2

j + 2

)
d

= (−1)(k+j)d

(
k

j

)
d

+ L(k+1)d

(
k

j + 1

)
d

+ (−1)jd
(

k

j + 2

)
d

. (4.3)

Proof. In order to simplify the writing of this proof, let us write Pk,d using equation (3.10)
where Ck,d,j are given by equation (3.17).

Therefore, by theorem 3.9

k+3∑
j=0

Ck+2,d,j(−1)jdxjd = (−1)(k+1)d
k+1∑
j=0

Ck,d,jx
jd(x2d − (−1)dL(k+2)dx

d + (−1)kd).

Distributing the terms inside the parenthesis into the sum, the previous equation is equal to

=

k+1∑
j=0

(−1)(k+1)dCk,d,jx
(j+2)d − (−1)kdL(k+2)dCk,d,jx

(j+1)d + (−1)dCk,d,jx
jd.

Now we split this sum into three sums, and reindex each sum, we obtain∑k+3
j=0 Ck+2,d,j(−1)jdxjd =

∑k+3
j=2(−1)(k+1)dCk,d,j−2x

jd −
∑k+2

j=1(−1)kdL(k+2)dCk,d,j−1x
jd

+
∑k+1

j=0(−1)dCk,d,jx
jd.

(4.4)
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In this equation, let us compare the terms with power xjd in both sides of the equation
where 2 ≤ j ≤ k + 1, then

(−1)jdCk+2,d,j = (−1)(k+1)dCk,d,j−2 − (−1)kdL(k+2)dCk,d,j−1 + (−1)dCk,d,j . (4.5)

Now recall that by equation (3.17) the coefficients Ck,d,j are a multiplication of a power of −1
and a fibonomial, so that equation (4.5) can be written in the form

(−1)A
(
k + 3

j

)
d

= (−1)B
(
k + 1

j − 2

)
d

+ (−1)CL(k+2)d

(
k + 1

j − 1

)
d

+ (−1)D
(
k + 1

j

)
d

, (4.6)

where A, B, C and D are given by

A = jd+ j + j(k + 2)d− j(j − 1)d/2 + (k + 3)(k + 4)d/2,
B = (k + 1)d+ j + jkd− (j − 2)(j − 3)d/2 + (k + 1)(k + 2)d/2,
C = kd+ j + (j − 1)kd− (j − 1)(j − 2)d/2 + (k + 1)(k + 2)d/2,
D = d+ j + jkd− j(j − 1)d/2 + (k + 1)(k + 2)d/2.

Dividing equation (4.6) by (−1)A, yields an equation of the form(
k + 3

j

)
d

= (−1)B−A
(
k + 1

j − 2

)
d

+ (−1)C−AL(k+2)d

(
k + 1

j − 1

)
d

+ (−1)D−A
(
k + 1

j

)
d

. (4.7)

Since
B −A = (−3k − 7− j)d− 2,
C −A = (−2k − 2j − 6)d,
D −A = (−2k − 3j − 4)d,

then replacing these equations into equation (4.7), and reindexing by switching k to k−1, and
j to j + 2 we obtain equation (4.3) for k ≥ 2 and 0 ≤ j ≤ k. �

Theorem 4.2. Let Gn be a generalized Fibonacci sequence, and let k and d be positive
integers, then

k+1∑
j=0

(−1)j+jkd−j(j−1)d/2
(
k + 1

j

)
d

Gn+jkd = 0. (4.8)

Proof. By the definition of Qk,d, it follows that Qk,d(ϕ) = 0, so that

k+1∑
j=0

(−1)j+jkd−j(j−1)d/2
(
k + 1

j

)
d

ϕjkd = 0. (4.9)

Multiplying by ϕn, and using that ϕp = Fpϕ+ Fp−1 for any integer p, we obtain the identity

k+1∑
j=0

(−1)j+jkd−j(j−1)d/2
(
k + 1

j

)
d

(Fn+jkdϕ+ Fn+jkd−1) = 0. (4.10)

Since ϕ is irrational, it follows that

k+1∑
j=0

(−1)j+jkd−j(j−1)d/2
(
k + 1

j

)
d

Fn+jkd = 0, (4.11)

and
k+1∑
j=0

(−1)j+jkd−j(j−1)d/2
(
k + 1

j

)
d

Fn+jkd−1 = 0. (4.12)

10
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Given that any generalized Fibonacci sequence is a combination of Fn and Fn−1, then equations
(4.11) and (4.12) imply equation (4.8) for any generalized Fibonacci sequence. �

Finally, we show an application of Theorem 3.2. In order to state this theorem in a simple
form, we follow the convention that

(
k+1
i

)
d

= 0 if i > k + 1.

Theorem 4.3. Let k and d be positive integers, then(
k + 1

j

)
2d

=

2j∑
i=0

(−1)(i−j)(d+1)

(
k + 1

i

)
d

(
k + 1

2j − i

)
d

, (4.13)

for any 0 ≤ j ≤ k + 1.

Proof. By Theorem 3.2, Pk,2d(x) = Pk,d(x)Pk,d(ωx), where ω is a 2d primitive root of unity.
In order to simply the writing of the proof, let us write Pk,d using equation (3.10) where Ck,d,j

are given by equation (3.17). Then the equation Pk,2d(x) = Pk,d(x)Pk,d(ωx) becomes

k+1∑
j=0

Ck,2d,jx
2jd =

k+1∑
j=0

Ck,d,jx
jd

k+1∑
j=0

Ck,d,j(ωx)jd.

But since ω is a 2d primitive root of unity, then ωd = −1, so that the previous equation can
be written as

k+1∑
j=0

Ck,2d,jx
2jd =

k+1∑
j=0

Ck,d,jx
jd

k+1∑
i=0

Ck,d,i(−1)ixid.

Multiplying both sums, we obtain

k+1∑
j=0

Ck,2d,jx
2jd =

k+1∑
j=0

k+1∑
i=0

Ck,d,iCk,d,j(−1)ix(i+j)d. (4.14)

Comparing both sides of the previous equation, we notice that the left hand side does not
have any odd powers, so collecting terms with odd powers in the right hand side will produce
0. Therefore, we will collect only terms that contain even powers. Doing this, we can rewrite
equation (4.14) as∑k+1

j=0 Ck,2d,jx
2jd =

∑k+1
p=0

∑
0≤i,j≤k+1
i+j=2p

Ck,d,iCk,d,j(−1)ix2pd

=
∑k+1

p=0

∑rp,k
i=qp,k

Ck,d,iCk,d,2p−i(−1)ix2pd,

where qp,k = max (0, 2p− k − 1) and rp,k = min (k + 1, 2p). Equating coefficients we obtain

Ck,2d,p =

rp,k∑
i=qp,k

Ck,d,iCk,d,2p−i(−1)i, (4.15)

for any 0 ≤ p ≤ k + 1.
Let us substitute equation (3.17) into equation (4.15), then we obtain

(−1)j
(
k + 1

j

)
2d

=

rp,k∑
i=qp,k

(−1)A(i,j,k,d)

(
k + 1

i

)
d

(
k + 1

2j − i

)
d
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where A(i, j, k, d) is given by

A(i, j, k, d) = i+ ikd− i(i− 1)d/2 + (k + 1)(k + 2)d/2 + 2j − i+ (2j − i)kd
−(2j − i)(2j − i− 1)d/2 + (k + 1)(k + 2)d/2 + i

= i+ 2jkd− i(i− 1)d/2 + (k + 1)(k + 2)d+ 2j − (2j − i)(2j − i− 1)d/2
= i+ 2jkd− (i2 + 2j2 − 2ij − j)d+ 2j + (k + 1)(k + 2)d.

Therefore

(−1)A(i,j,k,d)−j = (−1)(i−j)(d+1).

It follows that (
k + 1

j

)
2d

=

rp,k∑
i=qp,k

(−1)(i−j)(d+1)

(
k + 1

i

)
d

(
k + 1

2j − i

)
d

.

This identity implies identity (4.13) when we interpret
(
k+1
j

)
d

= 0, whenever j > k + 1. �

5. Generalization to Fibonacci Polynomials

A Generalized Fibonacci Function Sequence Gn(x) is a sequence that satisfies the recur-
rence relation Gn(x) = xGn−1(x) +Gn−2(x), where G1(x) and G2(x) are functions (with real
or complex domain, and with real or complex codomain.) In particular, the sequence of Fi-
bonacci polynomials Fn(x) starts with F1(x) = 1, and F2(x) = x, while the sequence of Lucas
Polynomials Ln(x) starts with L1(x) = x and L2(x) = x2 + 2.

Binet’s formula generalizes for generalized Fibonacci Function sequences as

Gn(x) = A(x)αn(x) +B(x)(−1/α(x))n,

where A(x) and B(x) are functions, and α(x) plays the role of the Golden ratio ϕ, and is given
by

α(x) =
x+
√
x2 + 4

2
.

The polynomial Pk,d can be defined as the symmetrization of Pk,1 as

Pk,d(x, t) =

d∏
i=1

k∏
j=0

(ωit− (−1)jαk−2j(x)).

Observe that in this case, Pk,d depends on two variables. What we know at this moment about
Pk,d is that it is defined as a polynomial in t for fixed x. We will not talk about the nature of
the coefficients of that polynomial as functions yet, so we will hold this discussion until later in
this paper. At this moment, all that matters is that the coefficients of Pk,d(x, t) are functions
of x.

When we discuss below analogous results to the theorems in Section 4 of this paper, we
mean to say that we keep x fixed and consider Pk,d(x, t) as a polynomial in its variable t.

The analogous theorem to Theorem 3.1 holds without change. The divisibility result in
Theorem 3.2 is a consequence of the definition of Pk,d as a symmetrization of Pk,1, so it also
holds. The analogous to equation (3.3) is

Pk,d(x, t) = (−1)(k+1)(d+1)
k∏

j=0

(td − (−1)jdα(k−2j)d(x)), (5.1)

and also holds true, because its proof depends on the factorization of tn − λn that is deduced
in Theorem 3.3.
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Equation (5.1) can also be simplified when we multiply terms whose indices add up to k.
In this case Theorem 3.4 holds because its proof only uses that F−n(x) = (−1)n−1Fn(x),
αp(x) = Fp(x)α(x) + Fp−1(x), Lp(x) = Fp+1(x) + Fp−1(x), which are properties that are also
true for Fibonacci and Lucas polynomials.

The analogous to Theorem 3.5 also holds because its proof only depends on equation (5.1)
and the fact that tk − λk is a factor of tmk − λmk for every positive integer m.

The link between consecutive rows of Fibonomial coefficients established in Theorem 3.6
also holds, as this depends on the definition of Pk,d as a symmetrization of Pk,1. The analogous
factorization is

Pk+1,d(x, α(x)t) = (−1)d+1Pk,d(x, t)(α(k+2)d(x)td − (−1)(k+1)d). (5.2)

The main formula for Pk,d(x, t) follows the same lines of the proof of Theorem 3.7, and is

Pk,d(x, t) = (−1)(k+1)(k+2)d/2
k+1∑
j=0

(−1)j+jkd−j(j−1)d/2
(
k + 1

j

)
d,x

tjd. (5.3)

In this case the coefficients
(
k
j

)
d,x

are given by(
k

j

)
d,x

=
Fkd(x)

Fd(x)
·
F(k−1)d(x)

F2d(x)
·
F(k−2)d(x)

F3d(x)
· . . . ·

F(k−j+1)d(x)

Fjd(x)
,

when j > 0 and
(
k
0

)
d,x

= 1. The proof of this formula is done along the same lines of the

proof of Theorem 3.7. The needed changes are the following. First, due to equation (5.1) the
analogous of equations (3.8) and (3.9) are

Pk,d(x, t) =

(k−1)/2∏
j=0

(t2d − (−1)jdL(k−2j)d(x)td + (−1)d), (5.4)

when k is odd, and

Pk,d(x, t) = (−1)d+1(td − (−1)kd/2)

k/2−1∏
j=0

(t2d − (−1)jdL(k−2j)d(x)td + 1). (5.5)

when k is even. It follows that the coefficients of the polynomial Pk,d(x, t), as a polynomial
in t, are polynomials in x, because they are combinations of products of Lucas polynomials
(in the x variable.) Observe that the analogous equations to equations (3.14) and (3.15) also
holds in this case because α(x) is not a rational function. This can be established very easily
using the fact that limx→∞ α(x) =∞, and limx→−∞ α(x) = 0, so α(x) has only one horizontal
asymptote at −∞, while any rational function has the same horizontal asymptote at −∞ and
∞.

In particular, we deduce that for any generalized Fibonacci Function sequence Gn(x) we
must have an analogous equation to (3.18), namely

k+1∑
j=0

(−1)j+jkd−j(j−1)d/2
(
k + 1

j

)
d,x

Gk
n+jd(x) = 0. (5.6)

The analogous of Theorem 3.9 also holds, and gives us the equation

Pk+2,d(x,−t) = (−1)(k+1)dPk,d(x, t)(t2d − (−1)dL(k+2)d(x)td + (−1)kd). (5.7)

Finally, the proof that P1,kd(x, t) divides Qk,d(x, t) generalizes immediately also.
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As a consequence of the previous discussion, all generalizations of the theorems in section
5 hold. For example the analogous identity to identity (4.1) must be(

k + 2

j + 2

)
d,x

= (−1)(k+j)d

(
k

j

)
d,x

+ L(k+1)d(x)

(
k

j + 1

)
d,x

+ (−1)jd
(

k

j + 2

)
d,x

, (5.8)

for any integers k, d such that k, d ≥ 1. We also have an analogous to identity (4.2), namely
that for every generalized Fibonacci Function Sequence Gn(x), we have

k+1∑
j=0

(−1)j+jkd−j(j−1)d/2
(
k + 1

j

)
d,x

Gn+jkd(x) = 0, (5.9)

for any integers k, d such that k, d ≥ 1 and any integer n. Finally, we also have an analogous
of identity (4.13), namely(

k + 1

j

)
2d,x

=

2j∑
i=0

(−1)(i−j)(d+1)

(
k + 1

i

)
d,x

(
k + 1

2j − i

)
d,x

, (5.10)

for any 0 ≤ j ≤ k + 1 and any d ≥ 1.
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